TWO EPIMERIC, IRREGULAR DITERPENOID TOLUQUINOLS FROM THE BROWN ALGA CYSTOSEIRA STRICTA

Vincenzo Amico,* Mario Piattelli,
Dipartimento di Scienze Cbimiche dell'Universitá di Catania
Francesca Cunsolo, Placido Neri, and Giuseppe Ruberto*
Istituto del CNR per lo Studio delle Sostanze Naturali di Interesse Alimentare e Cbimico-Farmaceutico, Viale A. Doria 6, 95125 Catania, Italy

Abstract

Two novel, irregular tetraprenyltoluquinols have been isolated from the brown alga Cystoseira stricta and characterized by spectral methods.

Two groups of rearranged diterpenoids, mediterraneols (1), e.g., mediterraneol A [1] and cystoseirols (2), e.g., cystoseirol D [2], which possess an unprecedented bicyclo[4.2.1]nonane and an oxabicyclo[5.4.1]dodecane ring system, respectively, have been isolated by French authors from brown algae belonging to the genus Cystoseira: mediterraneols from Cystoseira mediterranea, and cystoseirols from the same alga as well as from the closely related Cystoseira tamariscifolia and Cystoseira stricta (Mont.) Sauv. (Cystoseiraceae).

Previous work from our group on this last alga collected off the Sicilian coasts has resulted in the isolation of several metabolites of mixed biogenesis, all of them with a regular diterpenoid moiety (3-6). A meticulous re-examination of the minor components of the lipid extracts from C. stricta has now led to the isolation of two previously unreported diterpenoid toluquinols, neobalearone [3] and epineobalearone [5]. The compounds' very similar ir, uv, and mass spectra suggested stereochemical rather than structural differences between the two, while the presence in their ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra of resonances for five tertiary methyls and a terminal methylene revealed that they were irregular diterpenoids. However, a closer examination of the spectral characteristics excluded any relationship with the cystoseirols or the mediterraneols.

The more polar of the two compounds from C . stricta, neobalearone $\{3\}, \mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{5}$ ($m / z 456.2877$, calcd 456.2875), $[\alpha]^{25} \mathrm{D}+120.0^{\circ}$, displayed uv absorptions for a hydroquinone nucleus (220 and $288 \mathrm{~nm}, \epsilon=10600$ and 4600) and ir bands for hydroxyl(s) ($3400 \mathrm{~cm}^{-1}$) and a hydrogen-bonded carbonyl ($1685 \mathrm{~cm}^{-1}$). Acetylation of $3\left(\mathrm{Ac}_{2} \mathrm{O} /\right.$ pyridine) afforded diacetate $\mathbf{4}, \mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{7}$. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ of $\mathbf{3}$ contains an $A B$ system (δ 6.54 and $6.41, J=3 \mathrm{~Hz}$) assignable to two meta-coupled aromatic protons and signals for a methoxyl ($\delta 3.72 \mathrm{~s}$) and a methyl ($\delta 2.21 \mathrm{~s}$) on aromatic ring. A benzylic methylene ($A B$ part of an $A B X$ system: $\delta 3.19$ and 2.39) is coupled with a methine, whose lowfield position (X part of an ABX system: $\delta \mathbf{3 . 2 1}$) indicates that it is adjacent to the carbonyl function. This three-spin system could be completely analyzed in the spectrum run in $\mathrm{C}_{6} \mathrm{D}_{6}[\mathrm{AB}$ part $\delta 3.61$, $\mathrm{dd}(J=12.5$ and 11.4 Hz), 3.47, $\mathrm{dd}(J=11.4$ and 2.2

$\begin{array}{ll}3 & R=H \\ 4 & R=A c\end{array}$

7

$5 \mathrm{R}=\mathrm{H}$
$6 \mathrm{R}=\mathrm{Ac}$

8

Hz); X part $\delta 2.58$, dd ($J=12.5$ and 2.2 Hz$)$]. A broad singlet at $\delta 7.10\left(\mathrm{D}_{2} \mathrm{O}\right.$-exchangeable), whose chemical shift is invariant regardless of dilution, was assigned to a phenolic hydroxyl involved in a hydrogen bond. The spectrum also shows resonances for an isopropenyl group (vinyl methyl at $\delta 1.76$ long-range coupled to the terminal methylene, $\delta 5.02$ and 4.89), which was located at $\mathrm{C}-2$ on the basis of a long-range coupling between $\mathrm{H}-2$ and $\mathrm{H}_{2}-4$.

The rest of the spectrum consists of a methine singlet whose chemical shift ($\delta 3.12$, $\mathrm{H}-6$) indicates that it is α to the carbonyl group, an ABX system [AB part $\delta 3.04$, dd ($J=12$ and 6 Hz), 1.82, dd ($J=12$ and 9 Hz), $\mathrm{H}_{2}-13$; X part $\delta 3.90$, dd ($J=9$ and 6 Hz), $\mathrm{H}-14$, shifted at 4.99 in the diacetate 4$]$, four tertiary methyls at $\delta 0.25,0.79$, 1.03 , and 1.10 , and a group of signals between $\delta 2.30$ and 1.10 , partly overlapped with other signals, assignable to three contiguous methylenes $\left(\mathrm{H}_{2}-8, \mathrm{H}_{2}-9\right.$, and $\mathrm{H}_{2^{-}}$ 10) not further coupled with other protons. These data and the ${ }^{13} \mathrm{C}$-nmr spectrum (Table 1), considered in comparison with that of balearone [7] (7) led us to formulate neobalearone as 3 (apart from stereochemistry). For clarity, the numbering system follows that for the related balearone. The proposed gross structure was unambiguously confirmed by long-range ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ correlation (Table 1).

The relative stereochemistry at C-6, C-7, C-11, C-12, and C-14 was deduced from a NOESY spectrum (Table 2), which showed $\mathrm{H}_{3}-18$ to be within nOe distance from $\mathrm{H}_{3}-14$ and $\mathrm{H}_{\mathrm{b}}-13, \mathrm{H}_{3}-16$ from $\mathrm{H}-6$ and $\mathrm{H}-14$, and $\mathrm{H}_{3}-17$ from $\mathrm{H}_{\mathrm{b}}-13$. The relative configuration at the remaining chiral center ($\mathrm{C}-2$) was assigned as depicted based on an nOe effect between $\mathrm{H}-6$ and $\mathrm{H}_{3}-20$, assuming a preferred conformation stabilized by

Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nmr Data for Neobalearone [3]. ${ }^{2}$

Position	δ_{c}	DEPT	$\delta_{\mathrm{H}}(J)$	H / C long range correlations ${ }^{\text {b }}$
1^{\prime}	146.4	C		H-3', H-5', 6'-Me, 1'-OH
2^{\prime}	127.0	C		$\mathrm{H}_{2}-1, \mathrm{l}^{\prime}-\mathrm{OH}$
3^{\prime}	113.2	CH	6.41 d (3)	H-5', $\mathrm{H}_{\mathrm{a}}-1$
4^{\prime}	153.2	C		H-3', H-5', -OMe
5 '	114.9	CH	6.54 d (3)	$\mathrm{H}-3^{\prime}, 6^{\prime}-\mathrm{Me}$
$6{ }^{\prime}$	127.5	C		6 '-Me
1	30.0	CH_{2}	$\left\{\begin{array}{l} \mathrm{H}_{\mathrm{a}} 3.19 \mathrm{~m}^{\mathrm{c}} \\ \mathrm{H}_{\mathrm{b}} 2.39 \mathrm{dd}(11,1.6) \end{array}\right.$	H-3'
2	64.8	CH	$3.21 \mathrm{~m}^{\text {c }}$	$\mathrm{H}_{2}-4, \mathrm{H}_{3}-20$
3	142.4	C		$\mathrm{H}-2, \mathrm{H}_{3}-20$
4	115.5	CH_{2}	$\left\{\begin{array}{l} \mathrm{H}_{\mathrm{a}} 5.02 \mathrm{bs} \\ \mathrm{H}_{\mathrm{b}} 4.89 \mathrm{bs} \end{array}\right.$	$\mathrm{H}-2, \mathrm{H}_{3}-20$
5	211.7	C		$\mathrm{H}_{2}-1, \mathrm{H}-2$
6	60.1	CH	3.12 s	$\mathrm{H}_{3}-19$
7	47.4	C		$\mathrm{H}-6, \mathrm{H}_{3}-18, \mathrm{H}_{3}-19$
8	40.9	CH_{2}	$1.30 \mathrm{~m}, 1.65 \mathrm{~m}$	H-6, $\mathrm{H}_{3}-19$
9	24.9	CH_{2}	1.75 m	
10	35.6	CH_{2}	$1.10 \mathrm{~m}, 2.30 \mathrm{~m}$	$\mathrm{H}_{3}-18$
11	52.9	C		$\mathrm{H}_{3}-18, \mathrm{H}_{3}-19$
12	81.1	C		$\mathrm{H}-6, \mathrm{H}_{2}-13, \mathrm{H}_{3}-18$
13	35.9	CH_{2}	$\left\{\begin{array}{l} \mathrm{H}_{\mathrm{a}} 3.04 \mathrm{dd}(12,6) \\ \mathrm{H}_{\mathrm{b}} 1.82 \mathrm{dd}(12,9) \end{array}\right.$	
14	78.4	CH	$3.90 \mathrm{dd}(9,6)$	$\mathrm{H}_{\mathrm{b}}-13, \mathrm{H}_{3}-16, \mathrm{H}_{3}-17$
15	79.8	C		$\mathrm{H}_{3}-16, \mathrm{H}_{3}-17$
16	27.6	Me	1.10 s	$\mathrm{H}_{3}-17$
17	22.3	Me	1.03 s	$\mathrm{H}_{3}-16$
18	18.8	Me	0.79 s	H_{2}-10
19	15.4	Me	0.25 s	H-6
20	20.9	Me	1.76 s	$\mathrm{H}_{2}-4$
-OMe	55.8	Me	3.72 s	
$6^{\prime}-\mathrm{Me}$	16.7	Me	2.21 s	H-5'
1^{\prime} - OH			7.10 bs	

${ }^{2}$ The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr spectra were run at 250 and 62.5 MHz , respectively, in CDCl_{3} (ppm from TMS).
${ }^{\text {b }}$ Long range correlations were obtained by two experiments for optimum generation of polarization transfer with $J=7.5$ and 10 Hz .
'Overlapped.
hydrogen bonding of the phenolic hydroxyl to the carbonyl group. To obtain a more detailed description of this conformation a computational analysis was carried out using the MacroModel program ${ }^{1}$ (MM2 force field) and assigning 1.8 and $3.5 \AA$ as the length of the hydrogen bond and the distance between $\mathrm{H}_{3}-20$ and the geminal methyl at $\mathrm{C}-15$, respectively (an interaction between these two groups is observed in the NOESY spectrum). A stereoscopic view of the conformation thus determined is shown in Figure 1 and allows the ascription of the unusual highfield position of the methyl at $\mathrm{C}-7(\delta 0.25)$ to the shielding effect of the double bond at $\mathrm{C}-3$. In fact, the resonance for this methyl undergoes a large downfield shift following catalytic hydrogenation ($\delta 0.77$ in the dihydroderivative 8) as well as by suppression of the hydrogen bond ($\delta 0.54$ in solution of $\mathrm{CD}_{3} \mathrm{OD}$ and 0.56 in the acetate 4).

[^0]Table 2. NOESY Data for Neobalearone [3] and Epineobalearone [5].

The second metabolite isolated from C. stricta, epineobalearone [5], $[\alpha]^{25} D-77.1^{\circ}$, has spectral properties similar to neobalearone, the main differences being observed in some of the proton resonances. In particular, the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of 5 (Table 3) contains a hydroxymethine resonance at a value as high as $\delta 2.20$, while a resonance assignable to the tertiary methyl at C-7 appears at a normal value ($\delta 0.96$). That

Figure 1. Stereoscopic drawings of the preferred conformation of compound 3.

5 has the same gross structure as $\mathbf{3}$, suspected from the similarity of the spectral properties, has been firmly established by long-range heteronuclear correlation (Table 3). In alkaline solution an equilibrium mixture, in which 3 predominates in the ratio 3:2, was obtained from either $\mathbf{3}$ or $\mathbf{5}$; therefore, they must differ only in the chirality of a carbon atom adjacent to the carbonyl. When the equilibration was performed in $\mathrm{CD}_{3} \mathrm{OD}$ in the presence of NaOD , the disappearance of the signal of $\mathrm{H}-2$ was observed in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum, while that of H-6 remained unmodified, thus showing that the chiral center at $\mathrm{C}-2$ was the one involved in the epimerization. An nOe interaction was observed between the methoxyl group and one of the geminal methyls at C -15 (Table 2), and in addition hydrogen bonding of the phenolic hydroxyl to the carbonyl was noted (the chemical shift of the $\mathrm{OH}-1^{\prime}$ signal in the ${ }^{1} \mathrm{H}$-nmr spectrum of 5 is in fact independent of concentration). Based on these findings, it was possible to determine the preferred conformation of $\mathbf{5}$ by the use of the MacroModel computer program. A stereoview of this conformation is shown in Figure 2. From this conformation it could be deduced that the exceptionally high-field value of the chemical shiff for the hydroxymethine proton at C 14 ($\boldsymbol{\delta} 2.20$) is due to the shielding effect of the aromatic ring. Acetylation of 5 gave the diacetate 6 , in which the acetoxymethine resonates at $\delta 4.55$ owing to the increased flexibility of the molecule when intramolecular hydrogen bonding is no longer feasible.

The possibility that only one of the isolated compounds is an algal constituent, the other one being an artifact, could be ruled out because in the experimental conditions of the isolation procedure epimerization does not occur to any extent.

Neobalearone and epineobalearone can hypothetically derive from the attack to an aromatic precursor of an activated form of geranyllavandulol, followed by modifications possibly catalyzed by the same enzyme systems that are involved in the biosynthesis of the regular diterpenoid counterpart, balearone.

EXPERIMENTAL

General methods. -Eims were determined at 70 eV on a Kratos MS-SOS instrument. Uv and ir

Figure 2. Stereoscopic drawings of the preferred conformation of compound 5.

Table 3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Data for Epineobalearone [5]. ${ }^{2}$

Position	$\delta_{\text {c }}$	DEPT	$\delta_{\mathrm{H}}(J)$	$\mathrm{H} /$ C long range correlations $^{\text {b }}$
$1{ }^{\prime}$	146.5	C		H-3', $\mathrm{H}-5^{\prime}, \mathrm{H}_{\mathrm{b}}-1,6^{\prime}-\mathrm{Me}$
2^{\prime}	127.6	C		$\mathrm{H}_{2}-1, \mathrm{l}^{\prime}$ ' OH
3^{\prime}	113.2	CH	6.46 d (3)	H-5', $\mathrm{H}_{2}-1$
$4{ }^{\prime}$	153.4	C		-OMe
$5{ }^{\prime}$	114.5	CH	6.56 d (3)	H-3', $\mathbf{6}^{\prime}-\mathrm{Me}$
6^{\prime}	127.9	C		6^{\prime}-Me
1	29.8	CH_{2}	$\left\{\begin{array}{l} \mathrm{H}_{\mathrm{a}} 3.22 \mathrm{dd}(13.5,11.3) \\ \mathrm{H}_{\mathrm{b}} 2.37 \mathrm{dd}(13.5,2.3) \end{array}\right.$	
2	66.9	CH	$3.34 \mathrm{dd}(11.3,2.3)$	$\mathrm{H}_{2}-1, \mathrm{H}_{2}-4, \mathrm{H}_{3}-20$
3	141.3	C		$\mathrm{H}-2, \mathrm{H}_{3}-20$
4	115.5	CH_{2}	$\left\{\begin{array}{l} 5.05 \mathrm{bs} \\ 4.89 \mathrm{bs} \end{array}\right.$	H-2, $\mathrm{H}_{3}-20$
5	210.8	C		$\mathrm{H}_{2}-1, \mathrm{H}-2, \mathrm{H}-6$
6	62.5	CH	3.08 s	$\mathrm{H}_{\mathrm{b}}-13, \mathrm{H}_{3}-19$
7	44.6	C		$\mathrm{H}-6, \mathrm{H}_{3}-18, \mathrm{H}_{3}-19$
8	41.2	CH_{2}	$1.17 \mathrm{~m}, 1.51 \mathrm{~m}$	H-6, $\mathrm{H}_{3}-19$
9	24.2	CH_{2}	1.64 m	
10	36.0	CH_{2}	$1.09 \mathrm{~m}, 2.22 \mathrm{~m}$	$\mathrm{H}_{3}-18$
11	52.9	C		$\mathrm{H}_{\mathrm{b}}-13, \mathrm{H}_{3}-18, \mathrm{H}_{3}-19$
12	82.5	C		H-6, $\mathrm{H}_{\mathrm{b}}-13, \mathrm{H}_{3}-18$
13	34.6	CH_{2}	$\left\{\begin{array}{l} \mathrm{H}_{2} 2.13 \mathrm{dd}(11.3,6.8) \\ \mathrm{H}_{\mathrm{b}} 1.68 \mathrm{dd}(11.3,10) \end{array}\right.$	
14	76.7	CH	$2.20 \mathrm{dd}(10,6.8)$	$\mathrm{H}_{\mathrm{b}}-13, \mathrm{H}_{3}-16, \mathrm{H}_{3}-17$
15	79.0	C		$\mathrm{H}_{3}-16, \mathrm{H}_{3}-17$
16	27.2	Me	0.72 s	$\mathrm{H}_{3}-17$
17	21.7	Me	0.84 s	$\mathrm{H}_{3}-16$
18	18.7	Me	0.64 s	
19	17.2	Me	0.96 s	H-6
20	20.7	Me	1.76 s	$\mathrm{H}_{2}-4$
-OMe	55.6	Me	3.70 s	
6^{\prime}-Me	16.7	Me	2.25 s	
1^{\prime}-OH			7.40 bs	

${ }^{2}$ The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr spectra were run at 250 MHz and 62.5 MHz , respectively, in CDCl_{3} (ppm from TMS).
${ }^{\text {b }}$ Long range correlations were obtained by two experiments for optimum generation of polarization transfer with $J=7.5$ and 10 Hz .
spectra were recorded on Perkin-Elmer model 330 and model 684 spectrophotometers, respectively. Nmr spectra were measured on a Bruker AC-250 instrument, operating at 250 and 62.9 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively. Multiplicities of ${ }^{13} \mathrm{C}-\mathrm{nmr}$ resonances were determined by DEPT experiments. COSY, longrange heteronuclear correlations (performed with maximum polarization for 7.5 and 10 Hz , leading to ${ }^{2} J$ and ${ }^{3} J$ signals in the same spectrum) and NOESY experiments on compounds 3 and 5 were run using the standard Bruker microprograms. Optical rotations were determined with a Perkin-Elmer 141 polarimeter using a $10-\mathrm{cm}$ microcell. Preparative liquid chromatography (plc) was carried out on a Jobin-Yvon LC Miniprep (LiChroprep Si $60,25-40 \mu$ as the stationary phase).

Plant material.-C. stricta was collected on rocks at about 1 m depth in October 1987 at Acicastello, Sicily. A voucher specimen is deposited at the Herbarium of the Department of Botany, Catania, Italy.

Extraction and purification. -Shade-dried and ground plant material (500 g) was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature with continuous stirring. The extracts were pooled and evaporated to give a dark green oil (15 g), which was applied to an open column ($3 \times 100 \mathrm{~cm}$) of Si gel using eluents of increasing polarity from hexane to $\mathrm{Et}_{2} \mathrm{O}$. Fractions of 200 ml were collected, and those exhibiting similar tlc profiles were combined. Fractions $30-33$ were pooled and subjected to plc $\left[\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}\right.$ ($97: 3$)] to yield 5 ($50 \mathrm{mg}, 0.01 \%$ dry wt of the alga). Fractions $34-36$ were evaporated to give a viscous residue which was purified by ple $\left[i \mathrm{PrOH}-\mathrm{C}_{6} \mathrm{H}_{12}(2: 98)\right]$ to give 3 ($67 \mathrm{mg}, 0.013 \%$ dry wt).

Compound 3.-Oily, $[\alpha]^{25} \mathrm{D}+120.0^{\circ}(c=1.60, \mathrm{ErOH})$; ir $\boldsymbol{v} \max ($ film $) \mathrm{cm}^{-1} 3395,1685,1614$, 1605; uv $\lambda \max$ (ErOH) $288 \mathrm{~nm}(\epsilon=4600), 220(\epsilon=10600)$; hreims $[\mathrm{M}]^{+} 456.2877$, calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{5}, 456.2875$; ms m/z (\%) 456 (1), 438 (11), 289 (8), 264 (11), 233 (7), 232 (6), 230 (11), 206 (6), 205 (4), 190 (8), 189 (8), 151 (19), 150 (50), 138 (27), 97 (38), 95 (38), 93 (34), 91 (30), 83 (46), 82 (27), 81 (42), 80 (31), 79 (50), 69 (65), 67 (61), 57 (42), 55 (100), 43 (54), $41(77)$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{see}$ Table 1; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(250 \mathrm{MHz}\right.$, TMS, δ in $\mathrm{CD}_{3} \mathrm{OD}$) 6.53 and 6.50 (AB system, each $1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{H}-\mathrm{S}^{\prime}$ and $\mathrm{H}-3^{\prime}$), 4.89 and 4.84 (each $1 \mathrm{H}, 2 \mathrm{bs}, \mathrm{H}_{\mathrm{a}}-4$ and $\mathrm{H}_{\mathrm{b}}-4$), 3.91 ($1 \mathrm{H}, \mathrm{dd}, J=10.2$ and $7 \mathrm{~Hz}, \mathrm{H}-14$), 3.70 $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=8.2$ and $5.6 \mathrm{~Hz}, \mathrm{H}-2), 3.12(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.08(1 \mathrm{H}, \mathrm{dd}, J=11.5$ and 7 $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{a}}-13\right), 3.05\left(1 \mathrm{H}, \mathrm{dd}, J=14\right.$ and $\left.8.2, \mathrm{H}_{2}-1\right), 2.63\left(1 \mathrm{H}, \mathrm{dd}, J=14\right.$ and $\left.5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-1\right), 2.20(3 \mathrm{H}, \mathrm{s}$, $\left.6^{\prime}-\mathrm{Me}\right), 1.81\left(1 \mathrm{H}, \mathrm{dd}, J=11.5\right.$ and $\left.10.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-13\right), 1.73(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-20), 1.13$ and 1.00 (each $3 \mathrm{H}, 2 \mathrm{~s}$, $\mathrm{H}-16$ and $\mathrm{H}-17$), 0.86 and 0.54 (each $3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-18$ and $\mathrm{H}-19$); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(250 \mathrm{MHz}, \mathrm{TMS}, \delta\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}$) $7.66\left(1 \mathrm{H}, \mathrm{bs}, 1^{\prime}-\mathrm{OH}\right), 6.90$ and 6.84 (AB system, each $1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$ and $\mathrm{H}-3^{\prime}$), $5.01(2 \mathrm{H}$, bs, $\mathrm{H}-4), 4.06(1 \mathrm{H}, \mathrm{dd}, J=10$ and $6 \mathrm{~Hz}, \mathrm{H}-14), 3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.61(1 \mathrm{H}, \mathrm{dd}, J=12.5$ and 11.4 Hz , $\left.\mathrm{H}_{\mathrm{a}}-1\right), 3.52(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.47(1 \mathrm{H}, \mathrm{dd}, J=11.4$ and $2.2 \mathrm{~Hz}, \mathrm{H}-2), 3.33(1 \mathrm{H}, \mathrm{dd}, J=12.5$ and 6 Hz , $\left.\mathrm{H}_{\mathrm{a}}-13\right), 2.63\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{Me}\right), 2.58\left(1 \mathrm{H}, \mathrm{dd}, J=12.5 \mathrm{and} 2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-1\right), 2.01(1 \mathrm{H}, \mathrm{dd}, J=12.5$ and 10 $\mathrm{Hz}, \mathrm{H}_{\mathrm{b}}-13$), 1.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-20$), 1.38 and 1.33 (each $3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-16$ and $\mathrm{H}-17$), 0.94 and 0.66 (each 3 H , 2s, $\mathrm{H}-19$ and $\mathrm{H}-18$).

Compound 5.-Oily, $[\alpha]^{25} \mathrm{D}-77.1^{\circ}(c=1.86, \mathrm{ErOH})$; ir $\nu \max$ (film) $\mathrm{cm}^{-1} 3400,1675,1640$, 1605; uv $\lambda \max (\mathrm{ErOH}) 291 \mathrm{~nm}(\epsilon=3300), 219(\epsilon=10800)$; hreims $[\mathrm{M}]^{+} 456.2871$, calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{5}, 456.2875$; ms m/z (\%) 456 (13), 438 (38), 420 (6), 360 (21), 342 (13), 288 (29), 286 (15), 273 (13), 246 (17), 233 (29), 232 (40), 228 (19), 206 (12), 205 (11), 191 (13), 190 (27), 189 (21), 168 (31), $155(75), 151(38), 150(100), 139(11), 137(44), 123(15), 113(23), 109(15), 96(11), 95(25), 91$ (11), 83 (11), 81 (15), 79 (11), 71 (42), 69 (17), 67 (15), 55 (11), 43 (30), 41 (15); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right)$ see Table 3; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(250 \mathrm{MHz}\right.$, TMS, δ in $\mathrm{CD}_{3} \mathrm{OD}$) 6.53 ($2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-5{ }^{\prime}$ and $\mathrm{H}-3$ '), 4.99 and 4.84 (each $1 \mathrm{H}, 2 \mathrm{bs}, \mathrm{H}_{\mathrm{a}}-4$ and $\left.\mathrm{H}_{\mathrm{b}}-4\right), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=9.5$ and $5 \mathrm{~Hz}, \mathrm{H}-2), 3.11$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.02\left(1 \mathrm{H}, \mathrm{dd}, J=14\right.$ and $\left.9.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-1\right), 2.97(1 \mathrm{H}, \mathrm{dd}, J=9.5$ and $7 \mathrm{~Hz}, \mathrm{H}-14), 2.63(1 \mathrm{H}$, dd, $J=14$ and $\left.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-1\right), 2.45\left(1 \mathrm{H}, \mathrm{dd}, J=11.8\right.$ and $\left.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-13\right), 2.19\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{Me}\right), 1.77(1 \mathrm{H}$, $\mathrm{dd}, J=11.8$ and $9.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-13$), $1.72(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-20), 0.97$ and 0.92 (each $3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-16$ and $\mathrm{H}-17$), 0.92 and 0.89 (each $3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-19$ and $\mathrm{H}-18$).

Acetylation of 3 and 5. -Compounds 3 and 5 (10 mg each) were acetylated separately overnight at room temperature with $\mathrm{Ac}_{2} \mathrm{O} /$ pyridine. Purification of plc $\left[\mathrm{Et}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{14}\right.$ (1:8)] gave the pure acetyl derivative.

Neobalearone diacetate [4].-Hreims $[\mathrm{M}]^{+}{ }^{540.3085}$, calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{7}, 540.3087$; ${ }^{1} \mathrm{H} \mathrm{nmr}(250$ MHz , TMS, δ in CDCl_{3}, selected values) $4.99(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 3.18\left(1 \mathrm{H}, \mathrm{dd}, J=14\right.$ and $6.25 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}$ $13), 3.17(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.16(1 \mathrm{H}, \mathrm{t}, J=7, \mathrm{H}-2), 2.96\left(1 \mathrm{H}, \mathrm{dd}, J=13\right.$ and $\left.7.5, \mathrm{H}_{\mathrm{a}}-1\right), 2.50(1 \mathrm{H}$, dd, $J=13$ and $\left.6.5, \mathrm{H}_{\mathrm{b}}-1\right), 2.08$ and 2.05 (each $\left.3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{AcO}-\right), 1.97\left(1 \mathrm{H}, \mathrm{dd}, J=14\right.$ and $\left.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-13\right), 0.56$ (3H, s, H-19).

Epineobalearone diactate [6].—Hreims [M$]^{+} 540.3082$, calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{7}, 540.3087$; ${ }^{1} \mathrm{H} \mathrm{nmr}(250$ MHz , TMS, δ in CDCl_{3}, selected values) $4.55(1 \mathrm{H}, \mathrm{bm}, \mathrm{H}-14), 3.33(1 \mathrm{H}, \mathrm{dd}, J=8$ and $4 \mathrm{~Hz}, \mathrm{H}-2), 3.02$ ($1 \mathrm{H}, \mathrm{dd}, J=13.3$ and $8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-1$), $2.44\left(1 \mathrm{H}\right.$, dd, $J=13.3$ and $\left.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-1\right), 2.38(1 \mathrm{H}, \mathrm{m}$ overlapped, $\left.\mathrm{H}_{2}-13\right) 2.06$ and 2.01 (each $3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}-$), 2.0 (1 H, m overlapped, $\mathrm{H}_{\mathrm{a}}-13$).

Catalytic hydrogenation of $\mathbf{3}$ to give 8.-A solution of $\mathbf{3}(15 \mathrm{mg}$) in EtOH (2 ml) was hydrogenated at room temperature under atmospheric pressure in the presence of Pd - C for 24 h . Removal of the catalyst by filtration followed by concentration under vacuum yielded 8 (9 mg): hreims $[\mathrm{M}]^{+}$ 458.3030 , calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{5}, 458.3032 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(250 \mathrm{MHz}\right.$, TMS, δ in $\left.\mathrm{CDCl}_{3}\right) 1.16$ and 0.81 (each $3 \mathrm{H}, 2 \mathrm{~d}, J=7 \mathrm{~Hz}, \mathrm{H}-4$ and $\mathrm{H}-20$), $0.77(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19)$.

Epimerization.-Neobalearone (20 mg) dissolved in EtOH was treated with 0.1 M NaOH in $\mathrm{MeOH}(0.4 \mathrm{ml})$ and the solution kept at room temperature for 4 h . After addition of $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ and neutralization with 0.1 M HCl the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a residue which was subjected to Si gel cc $\left[\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ (1:99) as solvent]. Two compounds were thus obtained, which were identified ($\mathrm{nmr}, \mathrm{ir},[\alpha], \mathrm{ms}$) as neobalearone and epineobalearone. When the reaction was performed by treating a solution of neobalearone (5 mg) in $\mathrm{CD}_{3} \mathrm{OD}(0.5 \mathrm{ml})$ with 0.1 M NaOD in $\mathrm{CD}_{3} \mathrm{OD}(0.1 \mathrm{ml})$, the epimerization could be followed by running ${ }^{1} \mathrm{H}$-nmr spectra at time intervals (20 min) until the equilibrium berween 3 and $5(3: 2)$ was reached ($\mathbf{4} \mathrm{h}$). Compound 5 in the same conditions afforded a mixture of the identical composition.

ACKNOWLEDGMENTS

The work was financially supported by the Ministero Pubblica Istruzione (Rome). We thank Prof. Cesare Gennari for running the modeling of our molecules at University of Milan, Italy.

LITERATURE CITED

1. C. Francisco, B. Banaigs, J. Teste, and A. Cave, J. Org. Chem., 51, 1115 (1986).
2. C. Francisco, B. Banaigs, M. Rakba, J. Teste, and A. Cave, J. Org. Chem., 51, 2707 (1986).
3. V. Amico, L. Mayol, P. Neri, M. Piatrelli, and G. Ruberto, Tetrabedron, 42, 6015 (1986).
4. V. Amico, F. Cunsolo, L. Mayol, M. Piattelli, and G. Ruberto, J. Nat. Prod., 50, 449 (1987).
5. V. Amico, F. Cunsolo, M. Piattelli, and G. Ruberto, Pbytochemistry, 26, 1719 (1987).
6. V. Amico, G. Bruno, F. Cunsolo, M. Piattelli, and G. Ruberto, Acta Crystallogr., Sect. C, 44, 686 (1988).
7. V. Amico, F. Cunsolo, F.R. Fronczek, M. Piattelli, and G. Ruberto, Tetrabedron, 40, 1721 (1984).

Received 6 February 1989

[^0]: ${ }^{1}$ The MacroModel program, developed by Prof. W.C. Still, is a copyright of Columbia University, New York.

